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Abstract
Recent studies showed that hydrogen peroxide (H2O2) enhanced bone markers expression in vascular smooth muscle cells
(VSMCs) implicated in osteoblastic differentiation. This study aimed at investigating the role of NAD(P)H oxidase in
vascular calcification processes. A7r5 rat VSMCs were incubated with b-glycerophosphate (10 mM) or uremic serum to
induce a diffuse mineralization. H2O2 production by VSMCs was determinated by chemiluminescence. NAD(P)H oxidase
sub-unit (p22phox), Cbfa-1, ERK phosphorylation and bone alkaline phosphatase (ALP) expressions were measured by
Western blotting. VSMCs exhibited higher production of H2O2 and early expression of p22phox with b-glycerophosphate or
uremic serum within 24 h of treatment. b-glycerophosphate-induced oxidative stress was associated with Cbfa-1 expression
followed by ALP expression and activity, meanwhile the VSMCs expressing ALP diffusely calcified their extracellular
matrix. Interestingly, diphenyleneiodonium partly prevented the osteoblastic differentiation. Results from this model
strongly suggest a major implication of vascular NAD(P)H oxidase in vascular calcification supported by VSMCs
osteoblastic differentiation.

Keywords: Vascular calcification, uremia, osteoblastic differentiation, NAD(P)H oxidase, b-glycerophosphate, oxidative

stress

Introduction

Vascular calcification [1], a major cardiovascular risk

factor, has long been thought to result from passive

depositions on necrotic or inflamed zone [2]. During

the last decade, it became clear that vascular calcifi-

cation involves an active and regulated process [3,4]

related to the osteoblastic differentiation of vascular

myocytes. Indeed, in normal vessel wall, vascular

smooth muscle cells (VSMCs) express a contractile

phenotype highly specialized to maintain vascular

tonus by contraction or relaxation. These VSMCs

also regulate extracellular matrix (ECM) mainly

constituted by proteoglycans, elastin and type I

collagen. However, exposed to pathogenic media

(uremia, diabetes mellitus), VSMCs gain a dediffer-

entiated phenotype characterized by a loss in con-

tractile proteins and an increase in ECM expression.

VSMC type is also able to acquire osteoblastic

characteristics by expressing bone proteins such as

osteopontin [5], type I collagen [6] and bone alkaline

phosphatase (ALP) [7]. ECM is therefore profoundly
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modified and becomes similar to that of skeletal

tissue, allowing calcium deposition leading then to

atherosclerosis calcification.

b-glycerophosphate [8], oxidizing LDL [9], homo-

cysteine [10] or hyperglycemia [11] are known to be

involved in vitro in this osteoblastic differentiation

mainly via activation of the Core binding factor alpha

1 (Cbfa-1) transcription factor. Pathologic conditions

such as diabetes mellitus and chronic renal failure are

associated with an enhanced vascular calcification

process detected by imaging or biological markers

[12�14]. An enhanced Cbfa-1 expression was re-

ported in these pathologies [15]. In addition, the

increase in CaXPO4 product observed in end stage

renal failure could further enhance the VSMC miner-

alization process [16].

Interestingly, oxidative stress prevailing in these

pathologies could participate in the development

of atherosclerosis [17,18]. An enhanced production

of reactive oxygen species (ROS) such as superoxide

anion (O2
+�) and H2O2 within arterial wall by

resident macrophages, endothelial cells and VSMCs

could be a cell signalling pathway involved in cell

cycle regulation, protein kinase activity, cell growth,

modification of ECM and gene expression [19]. In

addition, it has been recently shown that VSMCs

could produce intracellular O2
+� by NAD(P)H-like

system via two different homologues of the gp91phox

NAD(P)H oxidase sub-unit, Nox2 and Nox4 [20].

Since an inverse relationship was observed between

smooth muscle myosin heavy chain SM2 and expres-

sion of p22phox, another NAD(P)H oxidase mem-

brane sub-unit, oxidative stress may be involved in

the loss of contractile phenotype [21]. Oxidative

stress may also participate in the transdifferentiation

process as suggested by enhanced calcifications when

VSMCs are incubated in the presence of H2O2 [22].

Very recently, an oxidant generation (particularly

H2O2) and an over-expression in NAD(P)H oxidase

sub-units p22phox and Nox2 have been observed

around calcifying foci [23].

Thus, we hypothetized that VSMC-ROS produc-

tion, partly due to NAD(P)H oxidase activity, was

involved in the VSMC transdifferentiation. There-

fore, we investigated ROS production and NAD(P)H

oxidase expression induced by uremic serum and

b-glycerophosphate, a well known osteoblastic differ-

entiation agent, in VSMCs. Increase of vascular

calcification was assessed by Cbfa-1 and bone ALP

expression/activity. Calcification was confirmed with

the Von Kossa staining. Implication of oxidative stress

in osteoblastic differentiation was determinated using

diphenyleneiodonium (DPI), an uncompetitive inhi-

bitor of flavoenzymes. In order to determine the

potential signalling pathway involved, expression

of the phosphorylated extracellular signal-regulated

kinase (pERK) was also performed.

Materials and methods

Cells and reagents

The aortic rat VSMC line A7r5 was obtained from

the American Tissue Culture Collection (Flow La-

boratories, Rockeville, MD). All culture reagents

were purchased from Invitrogen (Cergy Pontoise,

France). Foetal bovine serum (FBS) was obtained

from Gibco (Grand Island, NY). b-glyceropho-

sphate, luminol, horseradish peroxidase (HRP) and

diphenyleneiodonium (DPI) were obtained from

Sigma Aldrich (St Quentin-Fallavier, France).

p22phox, Cbfa-1, ALP, pERK1/2 and total ERK

primary antibodies as well as secondary anti-goat

antibody were purchased from Tebu-Bio (Le Perray

en Yvelines, France). Enhanced chemiluminescence

(ECL) Western blotting detection reagents (Super-

signal† West Pico Chemiluminescent Substrate) were

provided by Pierce (Perbio Science, Brebières,

France). All solvents were obtained from Sigma

Aldrich (St Quentin-Fallavier, France).

Collection of pooled uremic and control sera

Uremic sera from 30 haemodialysis patients (mean

age of 6597.2 years old and stable on haemodialysis

for at least 2 years) were obtained and pooled from

pre-dialysis samples collected as part of the routine

monitoring. Control pool serum was obtained from

blood samples collected in the preventive medicine

centre.

A7r5 cell culture

A7r5 cells were grown in 60-mm-diameter dishes in

Dulbecco’s modified Eagle’s medium (DMEM) con-

taining 1 g/L D-glucose, 26.2 mM Na2HCO3, 4 mM

L-glutamine, 10% FBS and 1% antibiotic solution

(100 U/mL of penicillin and 100 mg/mL of strepto-

mycin). Cells were maintained in a humidified atmo-

sphere with 5% CO2 at 378C.

Before all experiments, the cells were made quies-

cent by incubation for 48 h in low serum medium

(0.5% FBS).

Cell culture with known vascular calcification factors:

b-glycerophosphate and uremic serum

b-glycerophosphate. A7r5 were cultured in growth

medium or in b-glycerophosphate-enriched medium

(DMEM (glucose 4.5 g/l) containing 15% FBS,

10 mmol/L sodium pyruvate, 100 U/mL penicillin,

100 mg/mL streptomycin and b-glycerophosphate

(10 mmol/L)) as previously reported [8,24], in the

presence or absence of DPI (1 mM) for 24 or 72 h.

The medium was replaced with fresh medium three

times a week. The phosphate concentration used in

this work and in previously reported studies seems

largely higher than levels currently observed in
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uremic serum. However, it has been shown that

hyperphosphatemia is not the only calcifying factor

present in uremia [15]. In addition, Chen et al. [25]

have shown that low-phosphate concentration did not

modify the expression of alkaline phosphatase and

osteopontin compared with a high concentration.

Uremic serum. A7r5 were incubated for 24 or

48 h with DMEM (glucose 4.5 g/l) containing 100 U/

mL penicillin, 100 mg/mL streptomycin plus 10%

uremic serum from dialysis patients or 10% serum

from healthy control patients. The main biological

features of control and uremic serum were reported

in Table I.

In the time course experiments, the beginning day

of culture in calcification medium was defined as day

0. Cells grown in growth medium were considered as

control cells. Cells grown in b-glycerophosphate- or

uremic serum-enriched medium (namely calcification

media) were considered as treated cells.

Determination of chemiluminescence intensity as an

indicator of H2O2 production

Luminol-enhanced chemiluminescence was used to

determine H2O2 production in cells cultured both in

control and calcification media. After 24, 48 or 72 h

culture (in uremic serum- or b-glycerophosphate-

enriched medium, respectively), the cells were placed

in RPMI medium containing 0.2 mM luminol and

0.1 g/L HRP and the H2O2 production was measured

by means of a luminometer Victor2 Wallac 1420

(Perkin Elmer SAS, Villebon sur Yvette, France).

After chemiluminescence assay, the medium was

discarded and cells were dissolved in 1 N NaOH.

Then, lysed cells were centrifuged at 3000 g for

10 min at 48C and protein concentration was mea-

sured by the Lowry et al. [26] method. Each

chemiluminescence measure was carried out in tri-

plicate and the experiments were repeated 5-times.

Results were expressed as counts/10 min/mg of pro-

tein.

In order to define maximal chemiluminescence

intensity, preliminary kinetic analyses were performed

with calcification medium including 1, 2, 3 and 6

days of incubation. According to these preliminary

results, 24, 48 and 72 h were chosen.

In absence of cells, no luminol-induced chemilumi-

nescence could be evidenced, ruling out an auto-

oxidation in the medium or serum itself. Indeed, in the

absence of cells, only a very low chemiluminescence

signal could be recorded with RPMI (6893.3 counts/

s), control (7391.7 counts/s) and b-glyceropho-

sphate medium (7491.6 counts/s) or control (599

3.3 counts/s) and uremic serum (6391.8 counts/s),

corresponding to the blank (67.299.9 counts/s) of

the luminomètre Victor2 Wallac 1420 (Perkin Elmer

SAS, Villebon sur Yvette, France). By contrast in the

presence of cells, chemiluminescence signal is regu-

larly comprised of between 3000�12 000 counts/s.

Determination of alkaline phosphatase activity

After incubation in control or calcification media,

cells were washed twice with phosphate-buffered

saline solution (PBS). Cells were suspended in ice

cold buffer consisting of 1% Triton X-100, 0.9%

NaCl, then lysed cells were centrifuged at 5000 g for

10 min at 48C. The alkaline phosphatase activity was

measured by a kinetic colorimetric method on an

Olympus AU 2700 (Rungis, France). The results

were expressed as unit/g of protein.

Western blotting of NAD(P)H oxidase sub-unit,

calcification markers and pERK1/2

After incubation in control or calcification media, in

the presence or absence of NAD(P)H oxidase in-

hibitor when expression of calcification markers was

assessed, cells were washed twice with phosphate-

buffered saline solution (PBS), scraped from the

culture vessels and collected. Harvested cells were

suspended in ice cold buffer consisting of 0.1 mM

Tris-HCl, 0.5% Triton X-100, 120 mM NaCl,

25 mM KCl, 2 mM CaCl2, 1 mM phenylmethylsul-

phonyl fluoride, 10 mM leupeptin and 1 mM pepstatin.

Then, lysed cells were centrifuged at 5000 g for

15 min at 48C and the protein concentration was

determined by Lowry method protein assay. Equal

amounts of sample proteins (50 mg) were electro-

phoretically separated on a 12% sodium dodecyl

sulphate�polyacrylamide gel. Proteins were electri-

cally transferred to nitrocellulose membrane and the

membrane was incubated overnight in blocking

solution (5% non-fat dry milk in TBS containing

0.1% Tween 20 (TBS-T)). Subsequently, monoclo-

nal goat primary antibodies against NAD(P)H

oxidase sub-unit p22phox, ALP, Cbfa-1 or pERK1/2

were added at 48C for 1 h. Since Nox1 and Nox4, the

two natural catalytic isoforms present in VSMC, are

functionally and structurally related to p22phox, which

stabilizes this complex through a proline rich region,

only the p22phox sub-unit has been explored. The

antibody-antigen complexes were detected by incu-

bating the membranes with horseradish conjugated

secondary antibody (Tebu-bio) for 1 h at room

Table I. Analysis of pooled control sera (blood samples collected

in the preventive medicine centre) and uremic sera (blood samples

collected from 30 haemodialysis patients).

Control serum Uremic serum

Urea (mM) 5.4090.25 21.8091.10

Creatinine (mM) 7491 739926

Calcium (mM) 1.9290.35 2.0390.05

Phosphorus (mM) 1.2190.01 1.4990.09

Homocysteine (mM) 11.9090.20 27.1092.42

ALP (U/l) 62921 90952

Superoxide production 791
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temperature. Reactive bands were visualized by

the ECL-enhanced chemiluminescence method.

The signal intensities were determined by imaging

the films with a Molecular Dynamic densitometer

and analysed by the Bio1D software. Values are the

means9SD calculated from three experiments.

Histochemical analysis

After 10 days of culture in control or b-glyceropho-

sphate-enriched medium, calcium deposition on

A7r5 cells was assessed by Von Kossa staining (30

min, 5% silver nitrate), as previously described [27].

Black colour determined diffusely in vitro calcification

throughout the cell layer.

Statistical analysis

All data were expressed as mean9SD and were

analysed for statistical significance by ANOVA least

significant difference. These analyses were performed

with the StatView version 5.0 software.

Results

b-glycerophosphate and uremic serum induced an over-

expression of p22phox, a NAD(P)H oxidase sub-unit, in

VSMC

We evaluated the effect of b-glycerophosphate and

pooled uremic serum on expression of NAD(P)H

oxidase p22phox sub-unit by A7r5 cells.

b-glycerophosphate, an osteoblastic differentiation

agent, significantly induced an early increase in

p22phox expression after 24 h of incubation (percen-

tage of p22phox increase compared to control condi-

tions: 94%, pB0.001), this expression being further

enhanced after 72 h. In addition, our results showed

that basal rate of p22phox expression by the cells in

control conditions was constant whatever the time of

incubation (see Figure 1A).

Incubation of the cells in the presence of pooled

uremic serum (see Table I for composition), known to

induce osteoblastic differentiation in bovine VSMC,

resulted in a significant increase in p22phox expression

after 24 h of incubation (106%, p�0.0226) com-

pared with pooled control serum (see Figure 1B), this

over-expression being sustained at 48 h.

b-glycerophosphate and uremic serum enhanced luminol-

induced chemiluminescence, indicating an over-

production of H2O2 by VSMC

The chemiluminescence intensity measured in A7r5

cells cultured in b-glycerophosphate-enriched med-

ium was significantly enhanced after 24 h (67%,

p�0.0134), this over-production being sustained at

72 h compared with control cells (see Figure 2A).

A7r5 cells cultured in the presence of uremic

serum-enriched medium showed the same profile of

chemiluminescence as observed with b-glyceropho-

sphate (see Figure 2B). Chemiluminescence intensity

was significantly increased as early as 24 h (31%,

p�0.0214), this over-production being enhanced at

48 h as compared with pooled control serum.

b-glycerophosphate and uremic serum-induced increase of

calcification

To confirm that A7r5 cells cultured with b-glycer-

ophosphate and uremic serum expressed osteoblastic

Figure 1. Effect of b-glycerophosphate and uremic serum on

expression of p22phox, a NAD(P)H oxidase sub-unit, in vascular

smooth muscle cells. A7r5 cells were cultured (A) in control or b-

glycerophosphate-enriched medium for 24 and 72 h and (B) in

control or uremic serum for 24 and 48 h. Expression of NAD(P)H

oxidase sub-unit p22phox was then determined using 50 mg of

protein extracts which were analysed by polyacrylamide gel

electrophoresis. All intensities were expressed as arbitrary units

from whole-cell lysates of A7r5 cells. Values are the means9SD

calculated from three experiments. * pB0.05 vs (A) control

medium or (B) control serum and # pB0.0001 vs (A) b-glycer-

ophosphate-enriched medium at 24 h.
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markers, we examined ALP expression by Western

blotting.

Both b-glycerophosphate and uremic serum did

not have any significant effect on ALP expression and

activity at 24 h of culture, by contrast our results

showed a delayed enhanced ALP expression by

77.5% (p�0.014) and 98% (pB0.05), respectively

at 72 h with b-glycerophosphate and 48 h with

uremic serum (see Table II). Moreover, ALP activity

was also analysed in cells cultured in b-glyceropho-

sphate and uremic serum. These two media do not

modified ALP activity at 24 h of culture. In agree-

ment with ALP expression, b-glycerophosphate

and uremic serum increased ALP activity by 118%

(pB0.0001) and 117% (pB0.05), respectively, at

72 h with b-glycerophosphate and 48 h with uremic

serum.

Moreover, Von Kossa staining showed a calcium

deposit on VSMCs cultured with b-glycerophosphate

compared to control cells (see Figure 3) after 10 days

of incubation.

H2O2 production derived from NAD(P)H oxidase

activation is involved in expression of osteoblastic markers

To further investigate ROS production as a contri-

buting factor of VSMC osteoblastic differentiation,

we examined the modulation of early markers of

osteoblastic differentiation such as Cbfa-1 expression

and ERK phosphorylation using b-glycerophosphate-

enriched medium.

Incubation of VSMC for 24 h with b-glyceropho-

sphate resulted in a 3-fold increase in ERK1/2

phosphorylation (pB0.0001) (see Figure 4) and in

a 2.5-fold increase in Cbfa-1 expression (pB0.001)

(see Figure 5).

Interestingly, DPI prevented the b-glyceropho-

sphate-induced increase in ERK1/2 phosphorylation

and Cbfa-1 expression (see Figures 4 and 5).

Discussion

This study aimed at exploring the implication of

NAD(P)H oxidase in the osteoblastic differentiation

of VSMC during the process of in vitro vascular

calcification. Our results clearly showed an increase

in NAD(P)H oxidase expression and in H2O2

generation, indirectly measured with a chemilumi-

nescence method, by VSMC after 24 h of culture in

calcification conditions such as b-glycerophosphate

or uremic serum. This increase of chemilumines-

cence intensity was associated with an early and late

Figure 2. Effect of b-glycerophosphate and uremic serum on

H2O2 production in vascular smooth muscle cells. A7r5 cells were

cultured (A) in control or b-glycerophosphate-enriched medium

for 24 and 72 h and (B) in control or uremic serum for 24 and 48 h.

Cells were then placed in RPMI medium containing 0.2 mM

luminol and 0.1 g/L HRP and the H2O2 production was measured

by means of a luminometer. All activities were expressed as counts

normalized from whole-cell lysates of A7r5 cells and results were

expressed as counts/10 min/mg of protein. Values are the means9

SD calculated from five triplicate experiments. * pB0.05 vs (A)

control medium or (B) control serum.

Table II. Effect of b-glycerophosphate and uremic serum on expression and activity of ALP in vascular smooth muscle cells. A7r5 cells

were cultured in control or b-glycerophosphate-enriched medium for 24 and 72 h and in control or uremic serum for 24 and 48 h.

Expression of ALP was then determined by polyacrylamide gel electrophoresis. All intensities were expressed as arbitrary units (AU). ALP

activity was performed on cell lysate by a colorimetric method. The results were expressed as Unit/g of protein (U/g).

Serum Medium

Control Uremic Control b-glycerophosphate

24 h 48 h 24 h 48 h 24 h 72 h 24 h 72 h

ALP (AU) 19.995.7 20.096.6 28.294.6 39.894.3* 27.999.3 31.7917.1 32.496.4 77.198.0*

ALP (U/g) 5.0391.2 4.7391.57 5.6791.53 10.392.2* 5.992.3 6.792.1 8.691.9 14.693.2*

* pB0.05 vs control medium at 72 h or control serum at 48 h.

Superoxide production 793
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modulation of osteoblastic differentiation markers

such as ERK1/2 phosphorylation, Cbfa-1 expression

and ALP expression and activity. The osteoblastic

transformation was further confirmed by Von Kossa

staining, showing a diffuse deposit of calcium after 10

days of culture in b-glycerophosphate-enriched med-

ium. The link between oxidative stress and osteo-

blastic differentiation was further demonstrated by

the reduction in Cbfa-1 expression using DPI as a

NAD(P)H oxidase inhibitor.

Vascular calcification in uremic patients has long

been regarded as a passive process in which distur-

bances in calcium phosphorus metabolism played a

central role. However, expression of bone matrix

proteins by VSMC in arteries recently suggested that

vascular calcification was not simply passive but rather

an active, cell-mediated process secondary to VSMC

transdifferentiation into osteoblast-like cells [28].

Interestingly, this osteoblastic differentiation leading

to media calcification is also observed in diabetic

patients in the absence of calcium abnormalities. In

vitro transdifferentiation processes could be achieved

by inorganic phosphate donors such as b-glyceropho-

sphate or uremic serum. Indeed, several groups

showed that incubation of VSMCs with b-glyceropho-

sphate was associated with high levels in nuclear Cbfa-

1 and ALP expression [8,29]. This latter protein is

largely involved in bone mineralization and was

identified in vascular-calcified lesions such as athero-

sclerosis, but not in control arterial wall [30]. Here, we

reported for the first time thatb-glycerophosphate and

uremic serum induced not only in vitro diffuse

calcification but also an early induction of NAD(P)H

oxidase system, demonstrated by p22phox expression,

associated with an increase of chemiluminescence

intensity. This endogenous increase of chemilumines-

cence intensity induced by calcifying conditions and

generated from an over-expression and activity of

NAD(P)H oxidase complex is in agreement with a

previous study showing that exogenous H2O2 could

initiate osteoblastic differentiation [22]. These results

strongly suggest that NAD(P)H oxidase may be an

early target for b-glycerophosphate or uremic serum.

Indeed, previous studies have clearly demonstrated an

NAD(P)H oxidase-dependent ROS over-production

in uremia [31�33] or related disorders [34]. The

hypothesis of an oxidative stress-induced calcification

Figure 3. Von Kossa staining of A7r5 cultured in control or b-

glycerophosphate-enriched medium. A7r5 cells were cultured for

10 days in the presence or absence of b-glycerophosphate-enriched

medium. Von Kossa staining of A7r5 was then assessed and showed

diffuse calcification (black colour for a positive detection) on ECM

of the cells. Panels depict cells that are grown in the absence (A) or

presence (B) of b-glycerophosphate. Cell cultures were observed by

light microscopy (�40 magnification).

Figure 4. Effect of b-glycerophosphate with or without dipheny-

leneiodonium, an inhibitor of NAD(P)H oxidase, on phosphoryla-

tion of ERK in vascular smooth muscle cells. A7r5 cells were

cultured for 24 h in the presence or absence of b-glycerophosphate-

enriched medium with or without diphenyleneiodonium (DPI)

(1 mM). Phosphorylation of ERK was then determined using 50 mg

of protein extract which were analysed by polyacrylamide gel

electrophoresis. All intensities were expressed as arbitrary units

from total ERK of A7r5 cells. Values are the means9SD calculated

from three experiments. * pB0.0001 vs control medium and § p�
0.0003 vs b-glycerophosphate-enriched medium.
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is further supported by the association of oxidative

stress markers, such as malondialdehyde and hydro-

peroxides in uremic animal models and recently in

haemodialysis patients [35,36].

To test directly whether the NAD(P)H oxidase

complex was critical for this H2O2 production by

VSMCs under calcification conditions, we used DPI

as a NAD(P)H oxidase inhibitor [37]. Our results

demonstrated a direct role of ROS production mainly

originated from NAD(P)H oxidase as an early event

in osteoblastic differentiation of VSMCs. Indeed in

VSMCs, nuclear Cbfa-1, a key regulatory transcrip-

tion factor in osteoblastic differentiation [29,38], was

activated concomitantly with the NAD(P)H oxidase

system (see Figure 1A Figure 5) and partly inhibited

with use of DPI (see Figure 5). Similar results have

been previously observed in the bone marrow cells

since Wang et al. [39] reported that Cbfa-1 expres-

sion was induced by O2

+� and accounted for

osteoblast marker synthesis and osteogenesis. The

ROS-mediated Cbfa-1 activation in such a model is

under the dependence of ERK activation, a specific

extracellular signal-regulated kinase member of

MAPK family sensitive to O2

+� [39]. The relevance

of the ERK pathway in VSMC transdifferentiation

has been also underlined since fibronectin induces

osteoblastic differentiation by activating ERK [40]. In

agreement with this observation, our results demon-

strated that DPI prevented this b-glycerophosphate-

induced ERK activation and Cbfa-1 expression.

Our study acknowledges some limitations concern-

ing the osteoblastic transformation of VSMC. Pre-

vious studies have shown that VSMC placed under

calcifying conditions lost their lineage markers such

as SM22 alpha and smooth muscle alpha-actin [29],

suggesting an osteoblastic transformation. Although

our study does not provide direct evidence of these

osteoblastic transformation by double-staining ex-

periments for VSMC and osteoblast markers, our

results strongly support the hypothesis that NADPH

oxidase is involved in vascular calcifications.

In conclusion, early NAD(P)H oxidase expression

and ROS production induced by b-glycerophosphate

appear as a key event in the increase of calcification.

Indeed, DPI prevented early ROS production and

late ALP expression. It could be suggested that O2

+�

produced by NAD(P)H oxidase is involved in ERK

phosphorylation and Cbfa-1 activating pathways.

The clinical relevance of such an early signalling

pathway observed in b-glycerophosphate-induced

osteoblastic differentiation needs to be further eval-

uated in pathological conditions inducing both vas-

cular calcification and oxidative stress such as end

stage renal failure and diabetes.

Acknowledgements

This work was sponsored by a grant from Amgen Inc.

Thibault Sutra was supported by a grant from the
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